Electrophysiological phenotype in the LQTS mutations Y111C and R518X in the KCNQ1 gene.
نویسندگان
چکیده
Long QT syndrome is the prototypical disorder of ventricular repolarization (VR), and a genotype-phenotype relation is postulated. Furthermore, although increased VR heterogeneity (dispersion) may be important in the arrhythmogenicity in long QT syndrome, this hypothesis has not been evaluated in humans and cannot be tested by conventional electrocardiography. In contrast, vectorcardiography allows assessment of VR heterogeneity and is more sensitive to VR alterations than electrocardiography. Therefore, vectorcardiography was used to compare the electrophysiological phenotypes of two mutations in the LQT1 gene with different in vitro biophysical properties, and with LQT2 mutation carriers and healthy control subjects. We included 99 LQT1 gene mutation carriers (57 Y111C, 42 R518X) and 19 LQT2 gene mutation carriers. Potassium channel function is in vitro most severely impaired in Y111C. The control group consisted of 121 healthy subjects. QRS, QT, and T-peak to T-end (Tp-e) intervals, measures of the QRS vector and T vector and their relationship, and T-loop morphology parameters were compared at rest. Apart from a longer heart rate-corrected QT interval (QT heart rate corrected according to Bazett) in Y111C mutation carriers, there were no significant differences between the two LQT1 mutations. No signs of increased VR heterogeneity were observed among the LQT1 and LQT2 mutation carriers. QT heart rate corrected according to Bazett and Tp-e were longer, and the Tp-e-to-QT ratio greater in LQT2 than in LQT1 and the control group. In conclusion, there was a marked discrepancy between in vitro potassium channel function and in vivo electrophysiological properties in these two LQT1 mutations. Together with previous observations of the relatively low risk for clinical events in Y111C mutation carriers, our results indicate need for cautiousness in predicting in vivo electrophysiological properties and the propensity for clinical events based on in vitro assessment of ion channel function alone.
منابع مشابه
Phenotype, origin and estimated prevalence of a common long QT syndrome mutation: a clinical, genealogical and molecular genetics study including Swedish R518X/KCNQ1 families
BACKGROUND The R518X/KCNQ1 mutation is a common cause of autosomal recessive (Jervell and Lange Nielsen Syndrome- JLNS) and autosomal dominant long QT syndrome (LQTS) worldwide. In Sweden p.R518X accounts for the majority of JLNS cases and is the second most common cause of LQTS. Here we investigate the clinical phenotype and origin of Swedish carriers of the p.R518X mutation. METHODS The stu...
متن کاملLong QT syndrome-associated mutations in KCNQ1 and KCNE1 subunits disrupt normal endosomal recycling of IKs channels.
Physical and emotional stress is accompanied by release of stress hormones such as the glucocorticoid cortisol. This hormone upregulates the serum- and glucocorticoid-inducible kinase (SGK)1, which in turn stimulates I(Ks), a slow delayed rectifier potassium current that mediates cardiac action potential repolarization. Mutations in I(Ks) channel alpha (KCNQ1, KvLQT1, Kv7.1) or beta (KCNE1, IsK...
متن کاملCellular Biology Long QT Syndrome–Associated Mutations in KCNQ1 and KCNE1 Subunits Disrupt Normal Endosomal Recycling of IKs Channels
Physical and emotional stress is accompanied by release of stress hormones such as the glucocorticoid cortisol. This hormone upregulates the serumand glucocorticoid-inducible kinase (SGK)1, which in turn stimulates IKs, a slow delayed rectifier potassium current that mediates cardiac action potential repolarization. Mutations in IKs channel (KCNQ1, KvLQT1, Kv7.1) or (KCNE1, IsK, minK) subunits ...
متن کاملIdentification of a Novel KCNQ1 Frameshift Mutation and Review of the Literature among Iranian Long QT Families
Background: Long QT syndrome (LQTS) is characterized by the prolongation of QT interval, which results in syncope and sudden cardiac death in young people. KCNQ1 is the most common gene responsible for this syndrome. Methods: Molecular investigation was performed by DNA Sanger sequencing in Iranian families with a history of syncope. In silico examinations were performed for predicting the path...
متن کاملHomozygous SCN5A mutation in long-QT syndrome with functional two-to-one atrioventricular block.
Heterozygous mutations in genes encoding cardiac ionic channel subunits KCNQ1, HERG, SCN5A, KCNE1, and KCNE2 are causally involved in the dominant form of long-QT syndrome (LQTS) while homozygous mutations in KCNQ1 and KCNE1 cause LQTS with or without congenital deafness. In addition, two homozygous HERG mutations have been associated with severe LQTS with functional atrioventricular conduction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 115 10 شماره
صفحات -
تاریخ انتشار 2013